50 research outputs found

    Ventricular conduction stability noninvasively identifies an arrhythmic substrate in survivors of idiopathic ventricular fibrillation

    Get PDF
    Background Idiopathic ventricular fibrillation (VF) is a diagnosis of exclusion following normal cardiac investigations. We sought to determine if exercise-induced changes in electrical substrate could distinguish patient groups with various ventricular arrhythmic pathophysiological conditions and identify patients susceptible to VF. Methods and Results Computed tomography and exercise testing in patients wearing a 252-electrode vest were combined to determine ventricular conduction stability between rest and peak exercise, as previously described. Using ventricular conduction stability, conduction heterogeneity in idiopathic VF survivors (n=14) was compared with those surviving VF during acute ischemia with preserved ventricular function following full revascularization (n=10), patients with benign ventricular ectopy (n=11), and patients with normal hearts, no arrhythmic history, and negative Ajmaline challenge during Brugada family screening (Brugada syndrome relatives; n=11). Activation patterns in normal subjects (Brugada syndrome relatives) are preserved following exercise, with mean ventricular conduction stability of 99.2±0.9%. Increased heterogeneity of activation occurred in the idiopathic VF survivors (ventricular conduction stability: 96.9±2.3%) compared with the other groups combined (versus 98.8±1.6%; P=0.001). All groups demonstrated periodic variation in activation heterogeneity (frequency, 0.3-1 Hz), but magnitude was greater in idiopathic VF survivors than Brugada syndrome relatives or patients with ventricular ectopy (7.6±4.1%, 2.9±2.9%, and 2.8±1.2%, respectively). The cause of this periodicity is unknown and was not replicable by introducing exercise-induced noise at comparable frequencies. Conclusions In normal subjects, ventricular activation patterns change little with exercise. In contrast, patients with susceptibility to VF experience activation heterogeneity following exercise that requires further investigation as a testable manifestation of underlying myocardial abnormalities otherwise silent during routine testing

    Cycle length evaluation in persistent atrial fibrillation using kernel density estimation to identify transient and stable rapid atrial activity

    Get PDF
    Purpose Left atrial (LA) rapid AF activity has been shown to co-localise with areas of successful atrial fibrillation termination by catheter ablation. We describe a technique that identifies rapid and regular activity. Methods Eight-second AF electrograms were recorded from LA regions during ablation for psAF. Local activation was annotated manually on bipolar signals and where these were of poor quality, we inspected unipolar signals. Dominant cycle length (DCL) was calculated from annotation pairs representing a single activation interval, using a probability density function (PDF) with kernel density estimation. Cumulative annotation duration compared to total segment length defined electrogram quality. DCL results were compared to dominant frequency (DF) and averaging. Results In total 507 8 s AF segments were analysed from 7 patients. Spearman’s correlation coefficient was 0.758 between independent annotators (P < 0.001), 0.837–0.94 between 8 s and ≥ 4 s segments (P < 0.001), 0.541 between DCL and DF (P < 0.001), and 0.79 between DCL and averaging (P < 0.001). Poorer segment organization gave greater errors between DCL and DF. Conclusion DCL identifies rapid atrial activity that may represent psAF drivers. This study uses DCL as a tool to evaluate the dynamic, patient specific properties of psAF by identifying rapid and regular activity. If automated, this technique could rapidly identify areas for ablation in psAF

    Electrocardiographic predictors of successful resynchronization of left bundle branch block by his bundle pacing

    Get PDF
    Background His bundle pacing (HBP) is an alternative to biventricular pacing (BVP) for delivering cardiac resynchronization therapy (CRT) in patients with heart failure and left bundle branch block (LBBB). It is not known whether ventricular activation times and patterns achieved by HBP are equivalent to intact conduction systems and not all patients with LBBB are resynchronized by HBP. Objective To compare activation times and patterns of His-CRT with BVP-CRT, LBBB and intact conduction systems. Methods In patients with LBBB, noninvasive epicardial mapping (ECG imaging) was performed during BVP and temporary HBP. Intrinsic activation was mapped in all subjects. Left ventricular activation times (LVAT) were measured and epicardial propagation mapping (EPM) was performed, to visualize epicardial wavefronts. Normal activation pattern and a normal LVAT range were determined from normal subjects. Results Forty-five patients were included, 24 with LBBB and LV impairment, and 21 with normal 12-lead ECG and LV function. In 87.5% of patients with LBBB, His-CRT successfully shortened LVAT by ≥10 ms. In 33.3%, His-CRT resulted in complete ventricular resynchronization, with activation times and patterns indistinguishable from normal subjects. EPM identified propagation discontinuity artifacts in 83% of patients with LBBB. This was the best predictor of whether successful resynchronization was achieved by HBP (logarithmic odds ratio, 2.19; 95% confidence interval, 0.07–4.31; p = .04). Conclusion Noninvasive electrocardiographic mapping appears to identify patients whose LBBB can be resynchronized by HBP. In contrast to BVP, His-CRT may deliver the maximum potential ventricular resynchronization, returning activation times, and patterns to those seen in normal hearts

    Alterations in vasomotor control of coronary resistance vessels in remodelled myocardium of swine with a recent myocardial infarction

    Get PDF
    The mechanism underlying the progressive deterioration of left ventricular (LV) dysfunction after myocardial infarction (MI) towards overt heart failure remains incompletely understood, but may involve impairments in coronary blood flow regulation within remodelled myocardium leading to intermittent myocardial ischemia. Blood flow to the remodelled myocardium is hampered as the coronary vasculature does not grow commensurate with the increase in LV mass and because extravascular compression of the coronary vasculature is increased. In addition to these factors, an increase in coronary vasomotor tone, secondary to neurohumoral activation and endothelial dysfunction, could also contribute to the impaired myocardial oxygen supply. Consequently, we explored, in a series of studies, the alterations in regulation of coronary resistance vessel tone in remodelled myocardium of swine with a 2 to 3-week-old MI. These studies indicate that myocardial oxygen balance is perturbed in remodelled myocardium, thereby forcing the myocardium to increase its oxygen extraction. These perturbations do not appear to be the result of blunted β-adrenergic or endothelial NO-mediated coronary vasodilator influences, and are opposed by an increased vasodilator influence through opening of KATP channels. Unexpectedly, we observed that despite increased circulating levels of noradrenaline, angiotensin II and endothelin-1, α-adrenergic tone remained negligible, while the coronary vasoconstrictor influences of endogenous endothelin and angiotensin II were virtually abolished. We conclude that, early after MI, perturbations in myocardial oxygen balance are observed in remodelled myocardium. However, adaptive alterations in coronary resistance vessel control, consisting of increased vasodilator influences in conjunction with blunted vasoconstrictor influences, act to minimize the impairments of myocardial oxygen balance

    Right ventricular lead implantation facilitated by a guiding sheath in a patient with severe chamber dilatation with tricuspid regurgitation

    Get PDF
    Implantation of pacemakers can be challenging in the context of dilated cardiac chambers and valvular regurgitation. We report a difficult case of single chamber pacemaker implantation in a patient with restrictrive cardiomyopathy resulting in grossly enlarged atria and severe tricuspid regurgitation. In this situation, use of a slittable guiding sheath, more typically used for coronary sinus lead implantation, greatly facilitated rapid and stable deployment of the right ventricular lead
    corecore